IEEE Spectrum: American Chemical Society Touts Nanobots as Nanotechnology’s Big Impact

Folks at the Foresight Institute can take heart that at least the American Chemical Society (ACS) is promoting the idea that nanobots and nanoassemblers are how nanotechnology will have its big impact.

via IEEE Spectrum: American Chemical Society Touts Nanobots as Nanotechnology’s Big Impact.

New force-fluorescence device measures motion previously undetectable

A hybrid device combining force and fluorescence developed by researchers at the University of Illinois has made possible the accurate detection of nanometer-scale motion of biomolecules caused by pico-newton forces.

Continue reading

Photon-transistors for the supercomputers of the future

Scientist from the Niels Bohr Institute at University of Copenhagen and from Harvard University have worked out a new theory which describe how the necessary transistors for the quantum computers of the future may be created. The research has just been published in the scientific journal Nature Physics.

Researchers dream of quantum computers. Incredibly fast super computers which can solve such extremely complicated tasks that it will revolutionise the application possibilities. But there are some serious difficulties. One of them is the transistors, which are the systems that process the signals.

Two photons are sent through a nanowire towards an atom where they collide such that one photon (red) transfers its information to the other photon. Credit: Anders Sndberg Srensen associate professor University of Copenhagen Continue reading

Tumors gobble up nanoparticles

A nanoparticle drug delivery system designed for brain tumor therapy has shown promising tumor cell selectivity in a novel cell culture model devised by University of Nottingham scientists. 

The nanoparticles used in this study were prepared from a novel biodegradable polymer poly(glycerol adipate). The polymer has been further modified to enhance incorporation of drugs and make the nanoparticles more effective.

Continue reading

Silicon nanoparticles enhance performance of solar cells

Placing a film of silicon nanoparticles onto a silicon solar cell can boost power, reduce heat and prolong the cell’s life, researchers now report.

“Integrating a high-quality film of silicon nanoparticles 1 nanometer in size directly onto silicon solar cells improves power performance by 60 percent in the ultraviolet range of the spectrum,” said Munir Nayfeh, a physicist at the University of Illinois and corresponding author of a paper accepted for publication in Applied Physics Letters.
Continue reading

Beyond batteries: Storing power in a sheet of paper

Researchers at Rensselaer Polytechnic Institute have developed a new energy storage device that easily could be mistaken for a simple sheet of black paper.

The nanoengineered battery is lightweight, ultra thin, completely flexible, and geared toward meeting the trickiest design and energy requirements of tomorrow’s gadgets, implantable medical equipment, and transportation vehicles.

 

Continue reading

Anthrax vaccine produces immunity with nanoparticles, not needles

A vaccine against anthrax that is more effective and easier to administer than the present vaccine has proved highly effective in tests in mice and guinea pigs, report University of Michigan Medical School scientists in the August issue of Infection and Immunity.

The scientists were able to trigger a strong immune response by treating the inside of the animals’ noses with a “nanoemulsion” – a suspension of water, soybean oil, alcohol and surfactant emulsified to create droplets of only 200 to 300 nanometers in size. It would take about 265 of the droplets lined up side by side to equal the width of a human hair.

Continue reading

Computing breakthrough could elevate security to unprecedented levels

By using pulses of light to dramatically accelerate quantum computers, University of Michigan researchers have made strides in technology that could foil national and personal security threats.

It’s a leap, they say, that could lead to tougher protections of information and quicker deciphering of hackers’ encryption codes.

Continue reading

Nanoscale blasting adjusts resistance in magnetic sensors

A new process for adjusting the resistance of semiconductor devices by carpeting a small area of the device with tiny pits, like a yard dug up by demented terriers, may be the key to a new class of magnetic sensors, enabling new, ultra-dense data storage devices. The technique demonstrated by researchers at the National Institute of Standards and Technology (NIST)* allows engineers to tailor the electrical resistance of individual layers in a device without changing any other part of the processing or design.

 

Continue reading

Researchers develop method for mass production of nanogap electrodes

Researchers at the University of Pennsylvania have developed a reliable, reproducible method for parallel fabrication of multiple nanogap electrodes, a development crucial to the creation of mass-produced nanoscale electronics.

Continue reading

Nano ‘resonators’ form tiny logic gate

A nanoscopic ‘”resonator”‘ that could form the building blocks forof the logic gates inside an electromechanical computer has been developed by US researchers.

Sotiris Masmanidis at the California Institute of Technology in Pasadena and colleagues suggest that computers constructed from nanoscale electromechanical components could be more efficient and robust than purely electronic computers.

The resonator consists of a piece of gallium arsenide crystal 4 micrometres long, 0.8 micrometres wide and 0.2 micrometres deep, attached to a base. One side of the crystal “beam” is doped to provide extra electrons, while the other is doped so that it lacks them. When an alternating current (AC) voltage is applied across the post, an electric field is formed across the centre of the bar. A piezoelectric effect then kicks in, causing the gallium arsenide crystal to deform. If the AC voltage has the right frequency, the bar will resonate, vibrating like a metal bar after being struck.

Read the article at New Scientist

Nanoparticle technique could lead to improved semiconductors

Devices made from plastic semiconductors, like solar cells and light-emitting diodes (LEDs), could be improved based on information gained using a new nanoparticle technique developed at The University of Texas at Austin.

Continue reading

Nanotechnology – Age of Convergence

We are approaching an evolutionary event horizon, where the organic and the synthetic, the virtual and the “real”, are merging together into an operational ecology, an existence morphology for which there is no precendent in the history of which we are currently aware, catalyzed by nanotechnology 

Scientists train nano-‘building blocks’ to take on new shapes

Researchers from the University of Delaware and Washington University in St. Louis have figured out how to train synthetic polymer molecules to behave–to literally “self-assemble” –and form into long, multicompartment cylinders 1,000 times thinner than a human hair, with potential uses in radiology, signal communication and the delivery of therapeutic drugs in the human body. The discovery, a fundamental new tool for nanotechnology, is reported in the Aug. 3 issue of the prestigious journal ‘Science.’

 

Continue reading

Automation of Nanotech Manufacturing May Be Ahead

In an assist in the quest for ever smaller electronic devices, Duke University engineers have adapted a decades-old computer aided design and manufacturing process to reproduce nanosize structures with features on the order of single molecules.

The new automated technique for nanomanufacturing suggests that the emerging nanotechnology industry might capitalize on skills already mastered by today’s engineering workforce, according to the researchers.

Continue reading

Gold nanoparticles may pan out as tool for cancer diagnosis

When it comes to searching out cancer cells, gold may turn out to be a precious metal.

Purdue University researchers have created gold nanoparticles that are capable of identifying marker proteins on breast cancer cells, making the tiny particles a potential tool to better diagnose and treat cancer. The technology would be about three times cheaper than the most common current method and has the potential to provide many times the quantity and quality of data, said Joseph Irudayaraj, an associate professor of agricultural and biological engineering.

Continue reading

Nanotechnology helps scientists make bendy sensors for hydrogen vehicles

In recent years, Americans have been intrigued by the promise of hydrogen-powered vehicles. But experts have judged that several technology problems must be resolved before they are more than a novelty.

Recently, scientists at the U.S. Department of Energy’s Argonne National Laboratory have used their insights into nanomaterials to create bendy hydrogen sensors, which are at the heart of hydrogen fuel cells used in hydrogen vehicles.

 

Continue reading

Nano propellers pump with proper chemistry

The ability to pump liquids at the cellular scale opens up exciting possibilities, such as precisely targeting medicines and regulating flow into and out of cells. But designing this molecular machinery has proven difficult.

Now chemists at the University of Illinois at Chicago have created a theoretical blueprint for assembling a nanoscale propeller with molecule-sized blades.

Continue reading

Self-assembled nanostructures function better than bone as porosity increases

Naturally occurring structures like birds’ bones or tree trunks are thought to have evolved over eons to reach the best possible balance between stiffness and density. But in a June paper in Nature Materials, researchers at Sandia National Laboratories and the University of New Mexico (UNM), in conjunction with researchers at Case Western Reserve and Princeton Universities, show that nanoscale materials self-assembled in artificially determined patterns can improve upon nature’s designs. 

 On the left is a TEM micrograph of a porous cube-like nanostructure. On the right is a blow-up of the silica framework (the dark 2-nm thick regions on the left side figure) based on modeling. The highlighted structures represent the small rings refer ...

Continue reading

DNA sieve : Nanoscale pores can be tiny analysis labs

Imagine being able to rapidly identify tiny biological molecules such as DNA and toxins using less than a drop of salt water in a system that can fit on a microchip. It’s closer than you might believe, say a team of researchers at the National Institute of Standards and Technology (NIST).

 

Continue reading

Brightening prospects of using fluorescent nanotubes in medical applications

In a way, nanotubes are nature’s smallest candles. These tiny tubes are constructed from carbon atoms and they are so small that it takes about 100,000 laid side-by-side to span the width of a single human hair. In the last five years, scientists have discovered that some individual nanotubes are fluorescent. That is, they glow when they are bathed in light. Some glow brightly. Others glow dimly. Some glow in spots. Others glow all over.

Until now, this property has been largely academic. But researchers from the Vanderbilt Institute of Nanoscale Science and Engineering (VINSE) have removed an obstacle that has restricted fluorescent nanotubes from a variety of medical applications, including anti-cancer treatments.

Continue reading

Silicon nanowires upgrade data-storage technology

Scientists at the National Institute of Standards and Technology (NIST), along with colleagues at George Mason University and Kwangwoon University in Korea, have fabricated a memory device that combines silicon nanowires with a more traditional type of data-storage. Their hybrid structure may be more reliable than other nanowire-based memory devices recently built and more easily integrated into commercial applications.

Continue reading

Researchers show how to make polymeric micro- and nanoparticles

Researchers in the College of Engineering at UC Santa Barbara have discovered how to make polymeric micro- and nanoparticles in a wide variety of different shapes and sizes using commonly-available lab chemicals and equipment. Knowing how to create these particles in the average laboratory environment will facilitate further discovery, as the particles are essential to understanding the role of shape in particle function. Their research is published in today’s online edition of the Proceedings of the National Academy of Sciences.

Continue reading

Tomorrow’s green nanofactories

Viruses are notorious villains. They cause serious human diseases like AIDS, polio, and influenza, and can lead to system crashes and data loss in computers.

A new podcast explores how nanotechnology researcher Angela Belcher, from Massachusetts Institute of Technology (MIT), is working with viruses to make them do good things. By exploiting a virus’s ability to replicate rapidly and combine with semiconductor and electronic materials, she is coaxing them to grow and self-assemble nanomaterials into a functional electronic device. Through this marriage of nanotechnology with green chemistry, Belcher and her team are working toward building faster, better, cheaper and environmentally-friendly transistors, batteries, solar cells, diagnostic materials for detecting cancer, and semiconductors for use in modern electrical devices—everything from computers to cell phones.

Continue reading

Engines of Creation 2.0: Molecular Engineering: An Approach to the Development of General Capabilities for Molecular Manipulation

Developing the ability to design protein molecules will make it possible to construct molecular machines. These can then build second-generation machines that can perform extremely general synthesis of three-dimensional molecular structures, thus permitting construction of devices and materials to complex atomic specifications. This has important implications for computation and for characterization, manipulation, and repair of biological materials.

In this assay nanotech pioneer Eric Dexler provides his upgraded vision of future nanotechnology advances.  

Read rest of the article here

 

Scientists demonstrate first use of nanotechnology to enter plant cells

A team of Iowa State University plant scientists and materials chemists have successfully used nanotechnology to penetrate plant cell walls and simultaneously deliver a gene and a chemical that triggers its expression with controlled precision. Their breakthrough brings nanotechnology to plant biology and agricultural biotechnology, creating a powerful new tool for targeted delivery into plant cells.

Continue reading

Nanotube adhesive sticks better than a gecko’s foot

Mimicking the agile gecko, with its uncanny ability to run up walls and across ceilings, has long been a goal of materials scientists. Researchers at Rensselaer Polytechnic Institute and the University of Akron have taken one sticky step in the right direction, creating synthetic “gecko tape” with four times the sticking power of the real thing.

In a paper published in the June 18–22 issue of the Proceedings of the National Academy of Sciences, the researchers describe a process for making polymer surfaces covered with carbon nanotube hairs. The nanotubes imitate the thousands of microscopic hairs on a gecko’s footpad, which form weak bonds with whatever surface the creature touches, allowing it to “unstick” itself simply by shifting its foot.

Continue reading

Multifunctional nanoparticle platforms for targeting and imaging cancer cells

 

here has been much recent interest in how nanotechnology will impact the field of medicine. Unfortunately, a number of promising nanostructured systems have turned out to be extremely toxic to humans, thus precluding their use in clinical applications and dashing hopes of an early success for the interdisciplinary field of nanobiotechnology. Now a group of researchers at the University of Michigan Nanotechnology Institute for Medicine and Biological Sciences have devised a multifunctional nanoparticle platform comprising nanoparticles synthesized within dendrimers equipped with targeting molecules and dyes. These dendrimer nanoparticle systems are able to seek out and specifically bind to cancer cells.

Continue reading

Bacteria ferry nanoparticles into cells for early diagnosis, treatment

Researchers at Purdue University have shown that common bacteria can deliver a valuable cargo of “smart nanoparticles” into a cell to precisely position sensors, drugs or DNA for the early diagnosis and treatment of various diseases.

The approach represents a potential way to overcome hurdles in delivering cargo to the interiors of cells, where they could be used as an alterative technology for gene therapy, said Rashid Bashir, a researcher at Purdue’s Birck Nanotechnology Center.

 

Continue reading

A new technique for building nanodevices in the lab

Physicists at the University of Pennsylvania are using a new technique to craft some of the tiniest metal nanostructures ever created, none larger than 10 nanometers, or 10,000 times smaller than the width of a single human hair.

The technique employs transmission electron beam ablation lithography, or TEBAL, to “carve” nanostructures from thin sheets of gold, silver, aluminum and other metals. TEBAL provides a more dependable method for producing quality versions of these microscopic devices, which are studied for their novel mechanical properties and their potential use in next-generation sensors and electronics. The method also permits simultaneous, real-time atomic imaging of the devices as they are made.

 

Continue reading

Transparent transistors to bring future displays, ‘e-paper’

Researchers have used nanotechnology to create transparent transistors and circuits, a step that promises a broad range of applications, from e-paper and flexible color screens for consumer electronics to “smart cards” and “heads-up” displays in auto windshields.

The transistors are made of single “nanowires,” or tiny cylindrical structures that were assembled on glass or thin films of flexible plastic.

Continue reading

Pairing nanoparticles with proteins

 In groundbreaking research, scientists have demonstrated the ability to strategically attach gold nanoparticles — particles on the order of billionths of a meter — to proteins so as to form sheets of protein-gold arrays. The nanoparticles and methods to create nanoparticle-protein complexes can be used to help decipher protein structures, to identify functional parts of proteins, and to “glue” together new protein complexes. Applications envisioned by the researchers include catalysts for converting biomass to energy and precision “vehicles” for targeted drug delivery.

Continue reading

New, invisible nano-fibers conduct electricity, repel dirt

Tiny plastic fibers could be the key to some diverse technologies in the future — including self-cleaning surfaces, transparent electronics, and biomedical tools that manipulate strands of DNA.

In the June issue of the journal Nature Nanotechnology, Ohio State University researchers describe how they created surfaces that, seen with the eye, look as flat and transparent as a sheet of glass. But seen up close, the surfaces are actually carpeted with tiny fibers.

 

Continue reading

Remotely controlled nanomachines

Physicists at the University of California at Berkeley have produced images that show how light can control some of the smallest possible machines. By shining ultraviolet laser light on tiny molecules of azobenzene adhered on a layer of gold, they could force the molecules to change shape at will. Potentially, the molecules could be incorporated into nanomachines in the form of remotely controlled switches, pistons or other movable components.

 

Continue reading

Carbon nanotubes endure heavy wear and tear

The ability of carbon nanotubes to withstand repeated stress yet retain their structural and mechanical integrity is similar to the behavior of soft tissue, according to a new study from Rensselaer Polytechnic Institute.

When paired with the strong electrical conductivity of carbon nanotubes, this ability to endure wear and tear, or fatigue, suggests the materials could be used to create structures that mimic artificial muscles or interesting electro-mechanical systems, researchers said.

 

 

Continue reading

Helping carbon nanotubes get into shape

Researchers at Rensselaer Polytechnic Institute have developed a new method of compacting carbon nanotubes into dense bundles. These tightly packed bundles are efficient conductors and could one day replace copper as the primary interconnects used on computer chips and even hasten the transition to next-generation 3-D stacked chips.


Continue reading

3-D Nano Images

Understanding the functions of proteins often requires knowing their 3-D structures. But deciphering a protein’s structure is a time-consuming and difficult task, typically requiring crystallizing the proteins and bombarding them with x-rays. What’s more, scientists have not been able to crystallize thousands of proteins, so their structures remain unknown.

A far better option would be an analytic method that allowed biologists to directly determine protein structures. Conventional MRI can make out features down to three micrometers. Now IBM researchers demonstrate a resolution of 90 nanometers, a milestone toward their eventual goal of imaging individual protein molecules, which are roughly three to ten nanometers in size.

Read the article at Technology Review site.

Nanotech Assembler animation

Imagine being able to fabricate at home anything you like, eg laptop computer, hdtv or anything else you please. Well, in the not too distant future this may very well be possible.
This is a highly futuristic animation of a nanotech assembler.

Nanotube textile could make super-light armour

A lightweight material made from carbon nanotubes that is stronger than steel, and conducts almost as well as aluminium, has been unveiled by a start-up company in the US. The material could lead to lighter bulletproof clothing, wiring for aircraft and more efficient power-transmission lines, the company claims.

Researchers have long known that carbon nanotubes have extraordinary strength, transmit heat well and can act as semiconductors, depending on the method of construction. But these properties are of limited value in individual tubes and making bulk material with the same properties has not proved easy. Now Nanocomp, a start-up based in New Hampshire, US, has figured out a way round the problem.

Read the article at New Scientist site.

Practical Nanowire Devices

Researchers at Harvard University and the University of Hawaii have developed an easy way to align nanowires and carbon nanotubes over areas 100 times larger than is possible using existing methods. The researchers are also able to fabricate the nanowires on a number of different surfaces. The advance potentially paves the way to mass production of electronics devices based on these promising nanostructures.

The technique, based on high-volume manufacturing methods used to produce plastic bags, could make it practical to employ nanowires and carbon nanotubes for controlling pixels on large, flexible displays and for accurately detecting multiple chemicals, viruses, and biomarkers for diseases. The results were published online this week in the journal Nature Nanotechnology.

Read rest of the story at Technology Review site.

Nanomachine of the future captures great scientist’s bold vision

An idea conceived by one of the world’s greatest scientists nearly 150 years ago has finally been realised with a tiny machine that could eventually lead to lasers moving objects remotely.

James Clerk Maxwell, who is ranked along Isaac Newton and Albert Einstein for his contributions to science, imagined an atom-sized device — known as Maxwell’s Demon — that could trap molecules as they move in a specific direction.

Now scientists at the University of Edinburgh, inspired by Maxwell’s thought experiment in 1867, have been able to create such a “nanomachine” for the first time with their own “demon” inside it to ensnare the molecules as they move.
Continue reading

Controlling the movement of water through nanotube membranes

By fusing wet and dry nanotechnologies, researchers at Rensselaer Polytechnic Institute have found a way to control the flow of water through carbon nanotube membranes with an unprecedented level of precision. The research, which will be described in the March 14, 2007 issue of the journal Nano Letters, could inspire technologies designed to transform salt water into pure drinking water almost instantly, or to immediately separate a specific strand of DNA from the biological jumble.

3210_web.jpg
Continue reading

Nanotube, heal thyself

Pound for pound, carbon nanotubes are stronger and lighter than steel, but unlike other materials, the miniscule cylinders of carbon – which are no wider than a strand of DNA – remain remarkably robust even when chunks of their bodies are blasted away with heat or radiation. A new study by Rice University scientists offers the first explanation: tiny blemishes crawl over the skin of the damaged tubes, sewing up larger holes as they go.
Continue reading

Scientists track remarkable ‘breathing’ in nanoporous materials

Scientists all over the world are participating in the quest of new materials with properties suitable for the environmentally friendly and economically feasible separation, recovery, and reuse of vapours and greenhouse gases. A team of scientists from France, UK and the ESRF have recently discovered an unprecedented giant and reversible swelling of nanoporous materials with exceptional properties: huge flexibility and profound selectivity. Their results were recently published in Science.

3664_web.jpg
Continue reading

Quantum dot lasers — 1 dot makes all the difference

Physicists at the National Institute of Standards and Technology (NIST) and Stanford and Northwestern Universities have built micrometer-sized solid-state lasers in which a single quantum dot can play a dominant role in the device’s performance. Correctly tuned, these microlasers switch on at energies in the sub-microwatt range. These highly efficient optical devices could one day produce the ultimate low-power laser for telecommunications, optical computing and optical standards.

3759_web.jpg
Continue reading

Gold nanoparticles help detect a toxic metal mercury

With gold nanoparticles, DNA and some smart chemistry as their tools, scientists at Northwestern University have developed a simple “litmus test” for mercury that eventually could be used for on-the-spot environmental monitoring of bodies of water, such as rivers, streams, lakes and oceans, to evaluate their safety as food and drinking water sources.
Continue reading

Placing single nanowires: NIST makes the connection

Researchers at the National Institute of Standards and Technology (NIST) have devised a system for manipulating and precisely positioning individual nanowires on semiconductor wafers. Their technique, described in a recent paper,* allows them to fabricate sophisticated test structures to explore the properties of nanowires, using only optical microscopy and conventional photolithographic processing in lieu of advanced (and expensive) tools such as focused ion or electron beams.

3875_web.jpg
Continue reading

Ideologies and nanotechnology

Richard Jones of the Soft Machines blog ponders about the nanotech ideology:

“There are many debates about nanotechnology; what it is, what it will make possible, and what its dangers might be. On one level these may seem to be very technical in nature. So a question about whether a Drexler style assembler is technically feasible can rapidly descend into details of surface chemistry, while issues about the possible toxicity of carbon nanotubes turn on the procedures for reliable toxicological screening. But it’s at least arguable that the focus on the technical obscures the real causes of the arguments, which are actually based on clashes of ideology. We supposedly live in a non-ideological age, so what are the ideological divisions that underly debates about nanotechnology?”

Read his ideological positions on nanotech here

The longest carbon nanotubes you’ve ever seen

Using techniques that could revolutionize manufacturing for certain materials, researchers have grown carbon nanotubes that are the longest in the world. While still slightly less than 2 centimeters long, each nanotube is 900,000 times longer than its diameter.

The fibers–which have the potential to be longer, stronger and better conductors of electricity than copper and many other materials–could ultimately find use in smart fabrics, sensors and a host of other applications.
Continue reading

What Will the First Nanotechnology Products Be?

Michael Anissimov of the Accelerating future blog, provides some ideas to answer this question.

Read rest of this interesting article at Michael’s blog.