Category Archives: technology

Photon-transistors for the supercomputers of the future

Scientist from the Niels Bohr Institute at University of Copenhagen and from Harvard University have worked out a new theory which describe how the necessary transistors for the quantum computers of the future may be created. The research has just been published in the scientific journal Nature Physics.

Researchers dream of quantum computers. Incredibly fast super computers which can solve such extremely complicated tasks that it will revolutionise the application possibilities. But there are some serious difficulties. One of them is the transistors, which are the systems that process the signals.

Two photons are sent through a nanowire towards an atom where they collide such that one photon (red) transfers its information to the other photon. Credit: Anders Sndberg Srensen associate professor University of Copenhagen Continue reading

Tumors gobble up nanoparticles

A nanoparticle drug delivery system designed for brain tumor therapy has shown promising tumor cell selectivity in a novel cell culture model devised by University of Nottingham scientists. 

The nanoparticles used in this study were prepared from a novel biodegradable polymer poly(glycerol adipate). The polymer has been further modified to enhance incorporation of drugs and make the nanoparticles more effective.

Continue reading

Silicon nanoparticles enhance performance of solar cells

Placing a film of silicon nanoparticles onto a silicon solar cell can boost power, reduce heat and prolong the cell’s life, researchers now report.

“Integrating a high-quality film of silicon nanoparticles 1 nanometer in size directly onto silicon solar cells improves power performance by 60 percent in the ultraviolet range of the spectrum,” said Munir Nayfeh, a physicist at the University of Illinois and corresponding author of a paper accepted for publication in Applied Physics Letters.
Continue reading

Beyond batteries: Storing power in a sheet of paper

Researchers at Rensselaer Polytechnic Institute have developed a new energy storage device that easily could be mistaken for a simple sheet of black paper.

The nanoengineered battery is lightweight, ultra thin, completely flexible, and geared toward meeting the trickiest design and energy requirements of tomorrow’s gadgets, implantable medical equipment, and transportation vehicles.

 

Continue reading

Anthrax vaccine produces immunity with nanoparticles, not needles

A vaccine against anthrax that is more effective and easier to administer than the present vaccine has proved highly effective in tests in mice and guinea pigs, report University of Michigan Medical School scientists in the August issue of Infection and Immunity.

The scientists were able to trigger a strong immune response by treating the inside of the animals’ noses with a “nanoemulsion” – a suspension of water, soybean oil, alcohol and surfactant emulsified to create droplets of only 200 to 300 nanometers in size. It would take about 265 of the droplets lined up side by side to equal the width of a human hair.

Continue reading

Nanoscale blasting adjusts resistance in magnetic sensors

A new process for adjusting the resistance of semiconductor devices by carpeting a small area of the device with tiny pits, like a yard dug up by demented terriers, may be the key to a new class of magnetic sensors, enabling new, ultra-dense data storage devices. The technique demonstrated by researchers at the National Institute of Standards and Technology (NIST)* allows engineers to tailor the electrical resistance of individual layers in a device without changing any other part of the processing or design.

 

Continue reading

Researchers develop method for mass production of nanogap electrodes

Researchers at the University of Pennsylvania have developed a reliable, reproducible method for parallel fabrication of multiple nanogap electrodes, a development crucial to the creation of mass-produced nanoscale electronics.

Continue reading

Nano ‘resonators’ form tiny logic gate

A nanoscopic ‘”resonator”‘ that could form the building blocks forof the logic gates inside an electromechanical computer has been developed by US researchers.

Sotiris Masmanidis at the California Institute of Technology in Pasadena and colleagues suggest that computers constructed from nanoscale electromechanical components could be more efficient and robust than purely electronic computers.

The resonator consists of a piece of gallium arsenide crystal 4 micrometres long, 0.8 micrometres wide and 0.2 micrometres deep, attached to a base. One side of the crystal “beam” is doped to provide extra electrons, while the other is doped so that it lacks them. When an alternating current (AC) voltage is applied across the post, an electric field is formed across the centre of the bar. A piezoelectric effect then kicks in, causing the gallium arsenide crystal to deform. If the AC voltage has the right frequency, the bar will resonate, vibrating like a metal bar after being struck.

Read the article at New Scientist

Nanoparticle technique could lead to improved semiconductors

Devices made from plastic semiconductors, like solar cells and light-emitting diodes (LEDs), could be improved based on information gained using a new nanoparticle technique developed at The University of Texas at Austin.

Continue reading