Category Archives: Nanotubes

Brightening prospects of using fluorescent nanotubes in medical applications

In a way, nanotubes are nature’s smallest candles. These tiny tubes are constructed from carbon atoms and they are so small that it takes about 100,000 laid side-by-side to span the width of a single human hair. In the last five years, scientists have discovered that some individual nanotubes are fluorescent. That is, they glow when they are bathed in light. Some glow brightly. Others glow dimly. Some glow in spots. Others glow all over.

Until now, this property has been largely academic. But researchers from the Vanderbilt Institute of Nanoscale Science and Engineering (VINSE) have removed an obstacle that has restricted fluorescent nanotubes from a variety of medical applications, including anti-cancer treatments.

Continue reading

Nanotube adhesive sticks better than a gecko’s foot

Mimicking the agile gecko, with its uncanny ability to run up walls and across ceilings, has long been a goal of materials scientists. Researchers at Rensselaer Polytechnic Institute and the University of Akron have taken one sticky step in the right direction, creating synthetic “gecko tape” with four times the sticking power of the real thing.

In a paper published in the June 18–22 issue of the Proceedings of the National Academy of Sciences, the researchers describe a process for making polymer surfaces covered with carbon nanotube hairs. The nanotubes imitate the thousands of microscopic hairs on a gecko’s footpad, which form weak bonds with whatever surface the creature touches, allowing it to “unstick” itself simply by shifting its foot.

Continue reading

Carbon nanotubes endure heavy wear and tear

The ability of carbon nanotubes to withstand repeated stress yet retain their structural and mechanical integrity is similar to the behavior of soft tissue, according to a new study from Rensselaer Polytechnic Institute.

When paired with the strong electrical conductivity of carbon nanotubes, this ability to endure wear and tear, or fatigue, suggests the materials could be used to create structures that mimic artificial muscles or interesting electro-mechanical systems, researchers said.

 

 

Continue reading

Helping carbon nanotubes get into shape

Researchers at Rensselaer Polytechnic Institute have developed a new method of compacting carbon nanotubes into dense bundles. These tightly packed bundles are efficient conductors and could one day replace copper as the primary interconnects used on computer chips and even hasten the transition to next-generation 3-D stacked chips.


Continue reading

Nanotube textile could make super-light armour

A lightweight material made from carbon nanotubes that is stronger than steel, and conducts almost as well as aluminium, has been unveiled by a start-up company in the US. The material could lead to lighter bulletproof clothing, wiring for aircraft and more efficient power-transmission lines, the company claims.

Researchers have long known that carbon nanotubes have extraordinary strength, transmit heat well and can act as semiconductors, depending on the method of construction. But these properties are of limited value in individual tubes and making bulk material with the same properties has not proved easy. Now Nanocomp, a start-up based in New Hampshire, US, has figured out a way round the problem.

Read the article at New Scientist site.

Controlling the movement of water through nanotube membranes

By fusing wet and dry nanotechnologies, researchers at Rensselaer Polytechnic Institute have found a way to control the flow of water through carbon nanotube membranes with an unprecedented level of precision. The research, which will be described in the March 14, 2007 issue of the journal Nano Letters, could inspire technologies designed to transform salt water into pure drinking water almost instantly, or to immediately separate a specific strand of DNA from the biological jumble.

3210_web.jpg
Continue reading

Nanotube, heal thyself

Pound for pound, carbon nanotubes are stronger and lighter than steel, but unlike other materials, the miniscule cylinders of carbon – which are no wider than a strand of DNA – remain remarkably robust even when chunks of their bodies are blasted away with heat or radiation. A new study by Rice University scientists offers the first explanation: tiny blemishes crawl over the skin of the damaged tubes, sewing up larger holes as they go.
Continue reading